""" Tests for Lambda AI provider integration """ import os from unittest import mock import pytest import litellm from litellm import completion from litellm.llms.lambda_ai.chat.transformation import LambdaAIChatConfig def test_lambda_ai_config_initialization(): """Test LambdaAIChatConfig initializes correctly""" config = LambdaAIChatConfig() assert config.custom_llm_provider == "lambda_ai" def test_lambda_ai_get_openai_compatible_provider_info(): """Test Lambda AI provider info retrieval""" config = LambdaAIChatConfig() # Test with default values (no env vars set) with mock.patch.dict(os.environ, {}, clear=True): api_base, api_key = config._get_openai_compatible_provider_info(None, None) assert api_base == "https://api.lambda.ai/v1" assert api_key is None # Test with environment variables with mock.patch.dict(os.environ, {"LAMBDA_API_KEY": "test-key", "LAMBDA_API_BASE": "https://custom.lambda.ai/v1"}): api_base, api_key = config._get_openai_compatible_provider_info(None, None) assert api_base == "https://custom.lambda.ai/v1" assert api_key == "test-key" # Test with explicit parameters (should override env vars) with mock.patch.dict(os.environ, {"LAMBDA_API_KEY": "env-key", "LAMBDA_API_BASE": "https://env.lambda.ai/v1"}): api_base, api_key = config._get_openai_compatible_provider_info( "https://param.lambda.ai/v1", "param-key" ) assert api_base == "https://param.lambda.ai/v1" assert api_key == "param-key" def test_get_llm_provider_lambda_ai(): """Test that get_llm_provider correctly identifies Lambda AI""" from litellm.litellm_core_utils.get_llm_provider_logic import get_llm_provider # Test with lambda_ai/model-name format model, provider, api_key, api_base = get_llm_provider("lambda_ai/llama3.1-8b-instruct") assert model == "llama3.1-8b-instruct" assert provider == "lambda_ai" # Test with api_base containing Lambda AI endpoint model, provider, api_key, api_base = get_llm_provider( "llama3.1-8b-instruct", api_base="https://api.lambda.ai/v1" ) assert model == "llama3.1-8b-instruct" assert provider == "lambda_ai" assert api_base == "https://api.lambda.ai/v1" def test_lambda_ai_in_provider_lists(): """Test that Lambda AI is registered in all necessary provider lists""" assert "lambda_ai" in litellm.openai_compatible_providers assert "lambda_ai" in litellm.provider_list assert "https://api.lambda.ai/v1" in litellm.openai_compatible_endpoints @pytest.mark.asyncio async def test_lambda_ai_completion_call(): """Test completion call with Lambda AI provider (requires LAMBDA_API_KEY)""" # Skip if no API key is available if not os.getenv("LAMBDA_API_KEY"): pytest.skip("LAMBDA_API_KEY not set") try: response = await litellm.acompletion( model="lambda_ai/llama3.1-8b-instruct", messages=[{"role": "user", "content": "Hello, this is a test"}], max_tokens=10, ) assert response.choices[0].message.content assert response.model assert response.usage except Exception as e: # If the API key is invalid or there's a network issue, that's okay # The important thing is that the provider was recognized if "lambda_ai" not in str(e) and "provider" not in str(e).lower(): # Re-raise if it's not a provider-related error raise def test_lambda_ai_models_configuration(): """Test that Lambda AI models are configured correctly""" from litellm import get_model_info # Reload model cost map to pick up local changes os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True" litellm.model_cost = litellm.get_model_cost_map(url="") # Clear and repopulate lambda_ai_models list after reloading model_cost litellm.lambda_ai_models = [] litellm.add_known_models() # Some Lambda AI models to test lambda_ai_models = [ "lambda_ai/deepseek-llama3.3-70b", "lambda_ai/hermes3-8b", "lambda_ai/llama3.1-8b-instruct", "lambda_ai/llama3.2-11b-vision-instruct", "lambda_ai/qwen25-coder-32b-instruct", ] for model in lambda_ai_models: model_info = get_model_info(model) assert model_info is not None, f"Model info not found for {model}" assert model_info.get("litellm_provider") == "lambda_ai", f"{model} should have lambda_ai as provider" assert model_info.get("mode") == "chat", f"{model} should be in chat mode" assert model_info.get("supports_function_calling") is True, f"{model} should support function calling" assert model_info.get("supports_system_messages") is True, f"{model} should support system messages" # Check vision support for vision models if "vision" in model: assert model_info.get("supports_vision") is True, f"{model} should support vision" def test_lambda_ai_model_list_populated(): """Test that lambda_ai_models list is populated correctly""" # Ensure we're using local model cost map and repopulate models os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True" litellm.model_cost = litellm.get_model_cost_map(url="") # Clear and repopulate all model lists after reloading model_cost litellm.lambda_ai_models = [] litellm.add_known_models() # This should be populated by the add_known_models function assert len(litellm.lambda_ai_models) > 0, "lambda_ai_models list should not be empty" # Check that all models in the list are Lambda AI models for model in litellm.lambda_ai_models: assert model.startswith("lambda_ai/"), f"Model {model} should start with 'lambda_ai/'" # Check some expected models are in the list expected_models = [ "lambda_ai/llama3.1-8b-instruct", "lambda_ai/hermes3-405b", "lambda_ai/deepseek-v3-0324", ] for model in expected_models: assert model in litellm.lambda_ai_models, f"{model} should be in lambda_ai_models list"