Added LiteLLM to the stack
This commit is contained in:
@@ -0,0 +1,140 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../../../../.."))
|
||||
from litellm.llms.sagemaker.common_utils import AWSEventStreamDecoder
|
||||
from litellm.llms.sagemaker.completion.transformation import SagemakerConfig
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_aiter_bytes_unicode_decode_error():
|
||||
"""
|
||||
Test that AWSEventStreamDecoder.aiter_bytes() does not raise an error when encountering invalid UTF-8 bytes. (UnicodeDecodeError)
|
||||
|
||||
|
||||
Ensures stream processing continues despite the error.
|
||||
|
||||
Relevant issue: https://github.com/BerriAI/litellm/issues/9165
|
||||
"""
|
||||
# Create an instance of AWSEventStreamDecoder
|
||||
decoder = AWSEventStreamDecoder(model="test-model")
|
||||
|
||||
# Create a mock event that will trigger a UnicodeDecodeError
|
||||
mock_event = MagicMock()
|
||||
mock_event.to_response_dict.return_value = {
|
||||
"status_code": 200,
|
||||
"headers": {},
|
||||
"body": b"\xff\xfe", # Invalid UTF-8 bytes
|
||||
}
|
||||
|
||||
# Create a mock EventStreamBuffer that yields our mock event
|
||||
mock_buffer = MagicMock()
|
||||
mock_buffer.__iter__.return_value = [mock_event]
|
||||
|
||||
# Mock the EventStreamBuffer class
|
||||
with patch("botocore.eventstream.EventStreamBuffer", return_value=mock_buffer):
|
||||
# Create an async generator that yields some test bytes
|
||||
async def mock_iterator():
|
||||
yield b""
|
||||
|
||||
# Process the stream
|
||||
chunks = []
|
||||
async for chunk in decoder.aiter_bytes(mock_iterator()):
|
||||
if chunk is not None:
|
||||
print("chunk=", chunk)
|
||||
chunks.append(chunk)
|
||||
|
||||
# Verify that processing continued despite the error
|
||||
# The chunks list should be empty since we only sent invalid data
|
||||
assert len(chunks) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_aiter_bytes_valid_chunk_followed_by_unicode_error():
|
||||
"""
|
||||
Test that valid chunks are processed correctly even when followed by Unicode decode errors.
|
||||
This ensures errors don't corrupt or prevent processing of valid data that came before.
|
||||
|
||||
Relevant issue: https://github.com/BerriAI/litellm/issues/9165
|
||||
"""
|
||||
decoder = AWSEventStreamDecoder(model="test-model")
|
||||
|
||||
# Create two mock events - first valid, then invalid
|
||||
mock_valid_event = MagicMock()
|
||||
mock_valid_event.to_response_dict.return_value = {
|
||||
"status_code": 200,
|
||||
"headers": {},
|
||||
"body": json.dumps({"token": {"text": "hello"}}).encode(), # Valid data first
|
||||
}
|
||||
|
||||
mock_invalid_event = MagicMock()
|
||||
mock_invalid_event.to_response_dict.return_value = {
|
||||
"status_code": 200,
|
||||
"headers": {},
|
||||
"body": b"\xff\xfe", # Invalid UTF-8 bytes second
|
||||
}
|
||||
|
||||
# Create a mock EventStreamBuffer that yields valid event first, then invalid
|
||||
mock_buffer = MagicMock()
|
||||
mock_buffer.__iter__.return_value = [mock_valid_event, mock_invalid_event]
|
||||
|
||||
with patch("botocore.eventstream.EventStreamBuffer", return_value=mock_buffer):
|
||||
|
||||
async def mock_iterator():
|
||||
yield b"test_bytes"
|
||||
|
||||
chunks = []
|
||||
async for chunk in decoder.aiter_bytes(mock_iterator()):
|
||||
if chunk is not None:
|
||||
chunks.append(chunk)
|
||||
|
||||
# Verify we got our valid chunk despite the subsequent error
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0]["text"] == "hello" # Verify the content of the valid chunk
|
||||
|
||||
|
||||
class TestSagemakerTransform:
|
||||
def setup_method(self):
|
||||
self.config = SagemakerConfig()
|
||||
self.model = "test"
|
||||
self.logging_obj = MagicMock()
|
||||
|
||||
def test_map_mistral_params(self):
|
||||
"""Test that parameters are correctly mapped"""
|
||||
test_params = {
|
||||
"temperature": 0.7,
|
||||
"max_tokens": 200,
|
||||
"max_completion_tokens": 256,
|
||||
}
|
||||
|
||||
result = self.config.map_openai_params(
|
||||
non_default_params=test_params,
|
||||
optional_params={},
|
||||
model=self.model,
|
||||
drop_params=False,
|
||||
)
|
||||
|
||||
# The function should properly map max_completion_tokens to max_tokens and override max_tokens
|
||||
assert result == {"temperature": 0.7, "max_new_tokens": 256}
|
||||
|
||||
def test_mistral_max_tokens_backward_compat(self):
|
||||
"""Test that parameters are correctly mapped"""
|
||||
test_params = {
|
||||
"temperature": 0.7,
|
||||
"max_tokens": 200,
|
||||
}
|
||||
|
||||
result = self.config.map_openai_params(
|
||||
non_default_params=test_params,
|
||||
optional_params={},
|
||||
model=self.model,
|
||||
drop_params=False,
|
||||
)
|
||||
|
||||
# The function should properly map max_tokens if max_completion_tokens is not provided
|
||||
assert result == {"temperature": 0.7, "max_new_tokens": 200}
|
Reference in New Issue
Block a user