Added LiteLLM to the stack
This commit is contained in:
@@ -0,0 +1,116 @@
|
||||
# What is this?
|
||||
## Unit Tests for guardrails config
|
||||
import asyncio
|
||||
import inspect
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm.litellm_core_utils
|
||||
import litellm.litellm_core_utils.litellm_logging
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
from typing import Any, List, Literal, Optional, Tuple, Union
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import litellm
|
||||
from litellm import Cache, completion, embedding
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.types.utils import LiteLLMCommonStrings
|
||||
|
||||
|
||||
class CustomLoggingIntegration(CustomLogger):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def logging_hook(
|
||||
self, kwargs: dict, result: Any, call_type: str
|
||||
) -> Tuple[dict, Any]:
|
||||
input: Optional[Any] = kwargs.get("input", None)
|
||||
messages: Optional[List] = kwargs.get("messages", None)
|
||||
if call_type == "completion":
|
||||
# assume input is of type messages
|
||||
if input is not None and isinstance(input, list):
|
||||
input[0]["content"] = "Hey, my name is [NAME]."
|
||||
if messages is not None and isinstance(messages, List):
|
||||
messages[0]["content"] = "Hey, my name is [NAME]."
|
||||
|
||||
kwargs["input"] = input
|
||||
kwargs["messages"] = messages
|
||||
return kwargs, result
|
||||
|
||||
|
||||
def test_guardrail_masking_logging_only():
|
||||
"""
|
||||
Assert response is unmasked.
|
||||
|
||||
Assert logged response is masked.
|
||||
"""
|
||||
callback = CustomLoggingIntegration()
|
||||
|
||||
with patch.object(callback, "log_success_event", new=MagicMock()) as mock_call:
|
||||
litellm.callbacks = [callback]
|
||||
messages = [{"role": "user", "content": "Hey, my name is Peter."}]
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, mock_response="Hi Peter!"
|
||||
)
|
||||
|
||||
assert response.choices[0].message.content == "Hi Peter!" # type: ignore
|
||||
|
||||
time.sleep(3)
|
||||
mock_call.assert_called_once()
|
||||
|
||||
print(mock_call.call_args.kwargs["kwargs"]["messages"][0]["content"])
|
||||
|
||||
assert (
|
||||
mock_call.call_args.kwargs["kwargs"]["messages"][0]["content"]
|
||||
== "Hey, my name is [NAME]."
|
||||
)
|
||||
|
||||
|
||||
def test_guardrail_list_of_event_hooks():
|
||||
from litellm.integrations.custom_guardrail import CustomGuardrail
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
cg = CustomGuardrail(
|
||||
guardrail_name="custom-guard", event_hook=["pre_call", "post_call"]
|
||||
)
|
||||
|
||||
data = {"model": "gpt-3.5-turbo", "metadata": {"guardrails": ["custom-guard"]}}
|
||||
assert cg.should_run_guardrail(data=data, event_type=GuardrailEventHooks.pre_call)
|
||||
|
||||
assert cg.should_run_guardrail(data=data, event_type=GuardrailEventHooks.post_call)
|
||||
|
||||
assert not cg.should_run_guardrail(
|
||||
data=data, event_type=GuardrailEventHooks.during_call
|
||||
)
|
||||
|
||||
|
||||
def test_guardrail_info_response():
|
||||
from litellm.types.guardrails import (
|
||||
GuardrailInfoResponse,
|
||||
LitellmParams,
|
||||
)
|
||||
|
||||
guardrail_info = GuardrailInfoResponse(
|
||||
guardrail_name="aporia-pre-guard",
|
||||
litellm_params=LitellmParams(
|
||||
guardrail="aporia",
|
||||
mode="pre_call",
|
||||
),
|
||||
guardrail_info={
|
||||
"guardrail_name": "aporia-pre-guard",
|
||||
"litellm_params": {
|
||||
"guardrail": "aporia",
|
||||
"mode": "always_on",
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert guardrail_info.litellm_params.default_on == False
|
Reference in New Issue
Block a user