Added LiteLLM to the stack
This commit is contained in:
@@ -0,0 +1,830 @@
|
||||
# What is this?
|
||||
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import json
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union, cast
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
from litellm import Router, verbose_logger
|
||||
from litellm.caching.caching import DualCache
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
|
||||
from litellm.llms.base_llm.files.transformation import BaseFileEndpoints
|
||||
from litellm.proxy._types import (
|
||||
CallTypes,
|
||||
LiteLLM_ManagedFileTable,
|
||||
LiteLLM_ManagedObjectTable,
|
||||
UserAPIKeyAuth,
|
||||
)
|
||||
from litellm.proxy.openai_files_endpoints.common_utils import (
|
||||
_is_base64_encoded_unified_file_id,
|
||||
convert_b64_uid_to_unified_uid,
|
||||
get_batch_id_from_unified_batch_id,
|
||||
get_model_id_from_unified_batch_id,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
AsyncCursorPage,
|
||||
ChatCompletionFileObject,
|
||||
CreateFileRequest,
|
||||
FileObject,
|
||||
OpenAIFileObject,
|
||||
OpenAIFilesPurpose,
|
||||
)
|
||||
from litellm.types.utils import (
|
||||
LiteLLMBatch,
|
||||
LiteLLMFineTuningJob,
|
||||
LLMResponseTypes,
|
||||
SpecialEnums,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.types.llms.openai import HttpxBinaryResponseContent
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from opentelemetry.trace import Span as _Span
|
||||
|
||||
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
|
||||
from litellm.proxy.utils import PrismaClient as _PrismaClient
|
||||
|
||||
Span = Union[_Span, Any]
|
||||
InternalUsageCache = _InternalUsageCache
|
||||
PrismaClient = _PrismaClient
|
||||
else:
|
||||
Span = Any
|
||||
InternalUsageCache = Any
|
||||
PrismaClient = Any
|
||||
|
||||
|
||||
class _PROXY_LiteLLMManagedFiles(CustomLogger, BaseFileEndpoints):
|
||||
# Class variables or attributes
|
||||
def __init__(
|
||||
self, internal_usage_cache: InternalUsageCache, prisma_client: PrismaClient
|
||||
):
|
||||
self.internal_usage_cache = internal_usage_cache
|
||||
self.prisma_client = prisma_client
|
||||
|
||||
async def store_unified_file_id(
|
||||
self,
|
||||
file_id: str,
|
||||
file_object: Optional[OpenAIFileObject],
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
model_mappings: Dict[str, str],
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
) -> None:
|
||||
verbose_logger.info(
|
||||
f"Storing LiteLLM Managed File object with id={file_id} in cache"
|
||||
)
|
||||
if file_object is not None:
|
||||
litellm_managed_file_object = LiteLLM_ManagedFileTable(
|
||||
unified_file_id=file_id,
|
||||
file_object=file_object,
|
||||
model_mappings=model_mappings,
|
||||
flat_model_file_ids=list(model_mappings.values()),
|
||||
created_by=user_api_key_dict.user_id,
|
||||
updated_by=user_api_key_dict.user_id,
|
||||
)
|
||||
await self.internal_usage_cache.async_set_cache(
|
||||
key=file_id,
|
||||
value=litellm_managed_file_object.model_dump(),
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
|
||||
## STORE MODEL MAPPINGS IN DB
|
||||
|
||||
db_data = {
|
||||
"unified_file_id": file_id,
|
||||
"model_mappings": json.dumps(model_mappings),
|
||||
"flat_model_file_ids": list(model_mappings.values()),
|
||||
"created_by": user_api_key_dict.user_id,
|
||||
"updated_by": user_api_key_dict.user_id,
|
||||
}
|
||||
|
||||
if file_object is not None:
|
||||
db_data["file_object"] = file_object.model_dump_json()
|
||||
|
||||
result = await self.prisma_client.db.litellm_managedfiletable.create(
|
||||
data=db_data
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"LiteLLM Managed File object with id={file_id} stored in db: {result}"
|
||||
)
|
||||
|
||||
async def store_unified_object_id(
|
||||
self,
|
||||
unified_object_id: str,
|
||||
file_object: Union[LiteLLMBatch, LiteLLMFineTuningJob],
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
model_object_id: str,
|
||||
file_purpose: Literal["batch", "fine-tune"],
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
) -> None:
|
||||
verbose_logger.info(
|
||||
f"Storing LiteLLM Managed {file_purpose} object with id={unified_object_id} in cache"
|
||||
)
|
||||
litellm_managed_object = LiteLLM_ManagedObjectTable(
|
||||
unified_object_id=unified_object_id,
|
||||
model_object_id=model_object_id,
|
||||
file_purpose=file_purpose,
|
||||
file_object=file_object,
|
||||
)
|
||||
await self.internal_usage_cache.async_set_cache(
|
||||
key=unified_object_id,
|
||||
value=litellm_managed_object.model_dump(),
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
|
||||
await self.prisma_client.db.litellm_managedobjecttable.upsert(
|
||||
where={"unified_object_id": unified_object_id},
|
||||
data={
|
||||
"create": {
|
||||
"unified_object_id": unified_object_id,
|
||||
"file_object": file_object.model_dump_json(),
|
||||
"model_object_id": model_object_id,
|
||||
"file_purpose": file_purpose,
|
||||
"created_by": user_api_key_dict.user_id,
|
||||
"updated_by": user_api_key_dict.user_id,
|
||||
"status": file_object.status,
|
||||
},
|
||||
"update": {}, # don't do anything if it already exists
|
||||
}
|
||||
)
|
||||
|
||||
async def get_unified_file_id(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
|
||||
) -> Optional[LiteLLM_ManagedFileTable]:
|
||||
## CHECK CACHE
|
||||
result = cast(
|
||||
Optional[dict],
|
||||
await self.internal_usage_cache.async_get_cache(
|
||||
key=file_id,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
),
|
||||
)
|
||||
|
||||
if result:
|
||||
return LiteLLM_ManagedFileTable(**result)
|
||||
|
||||
## CHECK DB
|
||||
db_object = await self.prisma_client.db.litellm_managedfiletable.find_first(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
|
||||
if db_object:
|
||||
return LiteLLM_ManagedFileTable(**db_object.model_dump())
|
||||
return None
|
||||
|
||||
async def delete_unified_file_id(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
|
||||
) -> OpenAIFileObject:
|
||||
## get old value
|
||||
initial_value = await self.prisma_client.db.litellm_managedfiletable.find_first(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
if initial_value is None:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
## delete old value
|
||||
await self.internal_usage_cache.async_set_cache(
|
||||
key=file_id,
|
||||
value=None,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
await self.prisma_client.db.litellm_managedfiletable.delete(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
return initial_value.file_object
|
||||
|
||||
async def can_user_call_unified_file_id(
|
||||
self, unified_file_id: str, user_api_key_dict: UserAPIKeyAuth
|
||||
) -> bool:
|
||||
## check if the user has access to the unified file id
|
||||
|
||||
user_id = user_api_key_dict.user_id
|
||||
managed_file = await self.prisma_client.db.litellm_managedfiletable.find_first(
|
||||
where={"unified_file_id": unified_file_id}
|
||||
)
|
||||
|
||||
if managed_file:
|
||||
return managed_file.created_by == user_id
|
||||
return False
|
||||
|
||||
async def can_user_call_unified_object_id(
|
||||
self, unified_object_id: str, user_api_key_dict: UserAPIKeyAuth
|
||||
) -> bool:
|
||||
## check if the user has access to the unified object id
|
||||
## check if the user has access to the unified object id
|
||||
user_id = user_api_key_dict.user_id
|
||||
managed_object = (
|
||||
await self.prisma_client.db.litellm_managedobjecttable.find_first(
|
||||
where={"unified_object_id": unified_object_id}
|
||||
)
|
||||
)
|
||||
if managed_object:
|
||||
return managed_object.created_by == user_id
|
||||
return False
|
||||
|
||||
async def get_user_created_file_ids(
|
||||
self, user_api_key_dict: UserAPIKeyAuth, model_object_ids: List[str]
|
||||
) -> List[OpenAIFileObject]:
|
||||
"""
|
||||
Get all file ids created by the user for a list of model object ids
|
||||
|
||||
Returns:
|
||||
- List of OpenAIFileObject's
|
||||
"""
|
||||
file_ids = await self.prisma_client.db.litellm_managedfiletable.find_many(
|
||||
where={
|
||||
"created_by": user_api_key_dict.user_id,
|
||||
"flat_model_file_ids": {"hasSome": model_object_ids},
|
||||
}
|
||||
)
|
||||
return [OpenAIFileObject(**file_object.file_object) for file_object in file_ids]
|
||||
|
||||
async def check_managed_file_id_access(
|
||||
self, data: Dict, user_api_key_dict: UserAPIKeyAuth
|
||||
) -> bool:
|
||||
retrieve_file_id = cast(Optional[str], data.get("file_id"))
|
||||
potential_file_id = (
|
||||
_is_base64_encoded_unified_file_id(retrieve_file_id)
|
||||
if retrieve_file_id
|
||||
else False
|
||||
)
|
||||
if potential_file_id and retrieve_file_id:
|
||||
if await self.can_user_call_unified_file_id(
|
||||
retrieve_file_id, user_api_key_dict
|
||||
):
|
||||
return True
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail=f"User {user_api_key_dict.user_id} does not have access to the file {retrieve_file_id}",
|
||||
)
|
||||
return False
|
||||
|
||||
async def async_pre_call_hook(
|
||||
self,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
cache: DualCache,
|
||||
data: Dict,
|
||||
call_type: Literal[
|
||||
"completion",
|
||||
"text_completion",
|
||||
"embeddings",
|
||||
"image_generation",
|
||||
"moderation",
|
||||
"audio_transcription",
|
||||
"pass_through_endpoint",
|
||||
"rerank",
|
||||
"acreate_batch",
|
||||
"aretrieve_batch",
|
||||
"acreate_file",
|
||||
"afile_list",
|
||||
"afile_delete",
|
||||
"afile_content",
|
||||
"acreate_fine_tuning_job",
|
||||
"aretrieve_fine_tuning_job",
|
||||
"alist_fine_tuning_jobs",
|
||||
"acancel_fine_tuning_job",
|
||||
"mcp_call",
|
||||
],
|
||||
) -> Union[Exception, str, Dict, None]:
|
||||
"""
|
||||
- Detect litellm_proxy/ file_id
|
||||
- add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}}
|
||||
"""
|
||||
### HANDLE FILE ACCESS ### - ensure user has access to the file
|
||||
if (
|
||||
call_type == CallTypes.afile_content.value
|
||||
or call_type == CallTypes.afile_delete.value
|
||||
):
|
||||
await self.check_managed_file_id_access(data, user_api_key_dict)
|
||||
|
||||
### HANDLE TRANSFORMATIONS ###
|
||||
if call_type == CallTypes.completion.value:
|
||||
messages = data.get("messages")
|
||||
if messages:
|
||||
file_ids = self.get_file_ids_from_messages(messages)
|
||||
if file_ids:
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
file_ids, user_api_key_dict.parent_otel_span
|
||||
)
|
||||
|
||||
data["model_file_id_mapping"] = model_file_id_mapping
|
||||
elif call_type == CallTypes.afile_content.value:
|
||||
retrieve_file_id = cast(Optional[str], data.get("file_id"))
|
||||
potential_file_id = (
|
||||
_is_base64_encoded_unified_file_id(retrieve_file_id)
|
||||
if retrieve_file_id
|
||||
else False
|
||||
)
|
||||
if potential_file_id:
|
||||
model_id = self.get_model_id_from_unified_file_id(potential_file_id)
|
||||
if model_id:
|
||||
data["model"] = model_id
|
||||
data["file_id"] = self.get_output_file_id_from_unified_file_id(
|
||||
potential_file_id
|
||||
)
|
||||
elif call_type == CallTypes.acreate_batch.value:
|
||||
input_file_id = cast(Optional[str], data.get("input_file_id"))
|
||||
if input_file_id:
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
[input_file_id], user_api_key_dict.parent_otel_span
|
||||
)
|
||||
|
||||
data["model_file_id_mapping"] = model_file_id_mapping
|
||||
elif (
|
||||
call_type == CallTypes.aretrieve_batch.value
|
||||
or call_type == CallTypes.acancel_fine_tuning_job.value
|
||||
or call_type == CallTypes.aretrieve_fine_tuning_job.value
|
||||
):
|
||||
accessor_key: Optional[str] = None
|
||||
retrieve_object_id: Optional[str] = None
|
||||
if call_type == CallTypes.aretrieve_batch.value:
|
||||
accessor_key = "batch_id"
|
||||
elif (
|
||||
call_type == CallTypes.acancel_fine_tuning_job.value
|
||||
or call_type == CallTypes.aretrieve_fine_tuning_job.value
|
||||
):
|
||||
accessor_key = "fine_tuning_job_id"
|
||||
|
||||
if accessor_key:
|
||||
retrieve_object_id = cast(Optional[str], data.get(accessor_key))
|
||||
|
||||
potential_llm_object_id = (
|
||||
_is_base64_encoded_unified_file_id(retrieve_object_id)
|
||||
if retrieve_object_id
|
||||
else False
|
||||
)
|
||||
if potential_llm_object_id and retrieve_object_id:
|
||||
## VALIDATE USER HAS ACCESS TO THE OBJECT ##
|
||||
if not await self.can_user_call_unified_object_id(
|
||||
retrieve_object_id, user_api_key_dict
|
||||
):
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail=f"User {user_api_key_dict.user_id} does not have access to the object {retrieve_object_id}",
|
||||
)
|
||||
|
||||
## for managed batch id - get the model id
|
||||
potential_model_id = get_model_id_from_unified_batch_id(
|
||||
potential_llm_object_id
|
||||
)
|
||||
if potential_model_id is None:
|
||||
raise Exception(
|
||||
f"LiteLLM Managed {accessor_key} with id={retrieve_object_id} is invalid - does not contain encoded model_id."
|
||||
)
|
||||
data["model"] = potential_model_id
|
||||
data[accessor_key] = get_batch_id_from_unified_batch_id(
|
||||
potential_llm_object_id
|
||||
)
|
||||
elif call_type == CallTypes.acreate_fine_tuning_job.value:
|
||||
input_file_id = cast(Optional[str], data.get("training_file"))
|
||||
if input_file_id:
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
[input_file_id], user_api_key_dict.parent_otel_span
|
||||
)
|
||||
|
||||
return data
|
||||
|
||||
async def async_filter_deployments(
|
||||
self,
|
||||
model: str,
|
||||
healthy_deployments: List,
|
||||
messages: Optional[List[AllMessageValues]],
|
||||
request_kwargs: Optional[Dict] = None,
|
||||
parent_otel_span: Optional[Span] = None,
|
||||
) -> List[Dict]:
|
||||
if request_kwargs is None:
|
||||
return healthy_deployments
|
||||
|
||||
input_file_id = cast(Optional[str], request_kwargs.get("input_file_id"))
|
||||
model_file_id_mapping = cast(
|
||||
Optional[Dict[str, Dict[str, str]]],
|
||||
request_kwargs.get("model_file_id_mapping"),
|
||||
)
|
||||
allowed_model_ids = []
|
||||
if input_file_id and model_file_id_mapping:
|
||||
model_id_dict = model_file_id_mapping.get(input_file_id, {})
|
||||
allowed_model_ids = list(model_id_dict.keys())
|
||||
|
||||
if len(allowed_model_ids) == 0:
|
||||
return healthy_deployments
|
||||
|
||||
return [
|
||||
deployment
|
||||
for deployment in healthy_deployments
|
||||
if deployment.get("model_info", {}).get("id") in allowed_model_ids
|
||||
]
|
||||
|
||||
async def async_pre_call_deployment_hook(
|
||||
self, kwargs: Dict[str, Any], call_type: Optional[CallTypes]
|
||||
) -> Optional[dict]:
|
||||
"""
|
||||
Allow modifying the request just before it's sent to the deployment.
|
||||
"""
|
||||
accessor_key: Optional[str] = None
|
||||
if call_type and call_type == CallTypes.acreate_batch:
|
||||
accessor_key = "input_file_id"
|
||||
elif call_type and call_type == CallTypes.acreate_fine_tuning_job:
|
||||
accessor_key = "training_file"
|
||||
else:
|
||||
return kwargs
|
||||
|
||||
if accessor_key:
|
||||
input_file_id = cast(Optional[str], kwargs.get(accessor_key))
|
||||
model_file_id_mapping = cast(
|
||||
Optional[Dict[str, Dict[str, str]]], kwargs.get("model_file_id_mapping")
|
||||
)
|
||||
model_id = cast(Optional[str], kwargs.get("model_info", {}).get("id", None))
|
||||
mapped_file_id: Optional[str] = None
|
||||
if input_file_id and model_file_id_mapping and model_id:
|
||||
mapped_file_id = model_file_id_mapping.get(input_file_id, {}).get(
|
||||
model_id, None
|
||||
)
|
||||
if mapped_file_id:
|
||||
kwargs[accessor_key] = mapped_file_id
|
||||
|
||||
return kwargs
|
||||
|
||||
def get_file_ids_from_messages(self, messages: List[AllMessageValues]) -> List[str]:
|
||||
"""
|
||||
Gets file ids from messages
|
||||
"""
|
||||
file_ids = []
|
||||
for message in messages:
|
||||
if message.get("role") == "user":
|
||||
content = message.get("content")
|
||||
if content:
|
||||
if isinstance(content, str):
|
||||
continue
|
||||
for c in content:
|
||||
if c["type"] == "file":
|
||||
file_object = cast(ChatCompletionFileObject, c)
|
||||
file_object_file_field = file_object["file"]
|
||||
file_id = file_object_file_field.get("file_id")
|
||||
if file_id:
|
||||
file_ids.append(file_id)
|
||||
return file_ids
|
||||
|
||||
async def get_model_file_id_mapping(
|
||||
self, file_ids: List[str], litellm_parent_otel_span: Span
|
||||
) -> dict:
|
||||
"""
|
||||
Get model-specific file IDs for a list of proxy file IDs.
|
||||
Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id
|
||||
|
||||
1. Get all the litellm_proxy/ file_ids from the messages
|
||||
2. For each file_id, search for cache keys matching the pattern file_id:*
|
||||
3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id
|
||||
|
||||
Example:
|
||||
{
|
||||
"litellm_proxy/file_id": {
|
||||
"model_id": "model_file_id"
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
file_id_mapping: Dict[str, Dict[str, str]] = {}
|
||||
litellm_managed_file_ids = []
|
||||
|
||||
for file_id in file_ids:
|
||||
## CHECK IF FILE ID IS MANAGED BY LITELM
|
||||
is_base64_unified_file_id = _is_base64_encoded_unified_file_id(file_id)
|
||||
|
||||
if is_base64_unified_file_id:
|
||||
litellm_managed_file_ids.append(file_id)
|
||||
|
||||
if litellm_managed_file_ids:
|
||||
# Get all cache keys matching the pattern file_id:*
|
||||
for file_id in litellm_managed_file_ids:
|
||||
# Search for any cache key starting with this file_id
|
||||
unified_file_object = await self.get_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if unified_file_object:
|
||||
file_id_mapping[file_id] = unified_file_object.model_mappings
|
||||
|
||||
return file_id_mapping
|
||||
|
||||
async def create_file_for_each_model(
|
||||
self,
|
||||
llm_router: Optional[Router],
|
||||
_create_file_request: CreateFileRequest,
|
||||
target_model_names_list: List[str],
|
||||
litellm_parent_otel_span: Span,
|
||||
) -> List[OpenAIFileObject]:
|
||||
if llm_router is None:
|
||||
raise Exception("LLM Router not initialized. Ensure models added to proxy.")
|
||||
responses = []
|
||||
for model in target_model_names_list:
|
||||
individual_response = await llm_router.acreate_file(
|
||||
model=model, **_create_file_request
|
||||
)
|
||||
responses.append(individual_response)
|
||||
|
||||
return responses
|
||||
|
||||
async def acreate_file(
|
||||
self,
|
||||
create_file_request: CreateFileRequest,
|
||||
llm_router: Router,
|
||||
target_model_names_list: List[str],
|
||||
litellm_parent_otel_span: Span,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
) -> OpenAIFileObject:
|
||||
responses = await self.create_file_for_each_model(
|
||||
llm_router=llm_router,
|
||||
_create_file_request=create_file_request,
|
||||
target_model_names_list=target_model_names_list,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
response = await _PROXY_LiteLLMManagedFiles.return_unified_file_id(
|
||||
file_objects=responses,
|
||||
create_file_request=create_file_request,
|
||||
internal_usage_cache=self.internal_usage_cache,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
target_model_names_list=target_model_names_list,
|
||||
)
|
||||
|
||||
## STORE MODEL MAPPINGS IN DB
|
||||
model_mappings: Dict[str, str] = {}
|
||||
|
||||
for file_object in responses:
|
||||
model_file_id_mapping = file_object._hidden_params.get(
|
||||
"model_file_id_mapping"
|
||||
)
|
||||
if model_file_id_mapping and isinstance(model_file_id_mapping, dict):
|
||||
model_mappings.update(model_file_id_mapping)
|
||||
|
||||
await self.store_unified_file_id(
|
||||
file_id=response.id,
|
||||
file_object=response,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
model_mappings=model_mappings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
)
|
||||
return response
|
||||
|
||||
@staticmethod
|
||||
async def return_unified_file_id(
|
||||
file_objects: List[OpenAIFileObject],
|
||||
create_file_request: CreateFileRequest,
|
||||
internal_usage_cache: InternalUsageCache,
|
||||
litellm_parent_otel_span: Span,
|
||||
target_model_names_list: List[str],
|
||||
) -> OpenAIFileObject:
|
||||
## GET THE FILE TYPE FROM THE CREATE FILE REQUEST
|
||||
file_data = extract_file_data(create_file_request["file"])
|
||||
|
||||
file_type = file_data["content_type"]
|
||||
|
||||
output_file_id = file_objects[0].id
|
||||
model_id = file_objects[0]._hidden_params.get("model_id")
|
||||
|
||||
unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
|
||||
file_type,
|
||||
str(uuid.uuid4()),
|
||||
",".join(target_model_names_list),
|
||||
output_file_id,
|
||||
model_id,
|
||||
)
|
||||
|
||||
# Convert to URL-safe base64 and strip padding
|
||||
base64_unified_file_id = (
|
||||
base64.urlsafe_b64encode(unified_file_id.encode()).decode().rstrip("=")
|
||||
)
|
||||
|
||||
## CREATE RESPONSE OBJECT
|
||||
|
||||
response = OpenAIFileObject(
|
||||
id=base64_unified_file_id,
|
||||
object="file",
|
||||
purpose=create_file_request["purpose"],
|
||||
created_at=file_objects[0].created_at,
|
||||
bytes=file_objects[0].bytes,
|
||||
filename=file_objects[0].filename,
|
||||
status="uploaded",
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def get_unified_generic_response_id(
|
||||
self, model_id: str, generic_response_id: str
|
||||
) -> str:
|
||||
unified_generic_response_id = (
|
||||
SpecialEnums.LITELLM_MANAGED_GENERIC_RESPONSE_COMPLETE_STR.value.format(
|
||||
model_id, generic_response_id
|
||||
)
|
||||
)
|
||||
return (
|
||||
base64.urlsafe_b64encode(unified_generic_response_id.encode())
|
||||
.decode()
|
||||
.rstrip("=")
|
||||
)
|
||||
|
||||
def get_unified_batch_id(self, batch_id: str, model_id: str) -> str:
|
||||
unified_batch_id = SpecialEnums.LITELLM_MANAGED_BATCH_COMPLETE_STR.value.format(
|
||||
model_id, batch_id
|
||||
)
|
||||
return base64.urlsafe_b64encode(unified_batch_id.encode()).decode().rstrip("=")
|
||||
|
||||
def get_unified_output_file_id(
|
||||
self, output_file_id: str, model_id: str, model_name: Optional[str]
|
||||
) -> str:
|
||||
unified_output_file_id = (
|
||||
SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
|
||||
"application/json",
|
||||
str(uuid.uuid4()),
|
||||
model_name or "",
|
||||
output_file_id,
|
||||
model_id,
|
||||
)
|
||||
)
|
||||
return (
|
||||
base64.urlsafe_b64encode(unified_output_file_id.encode())
|
||||
.decode()
|
||||
.rstrip("=")
|
||||
)
|
||||
|
||||
def get_model_id_from_unified_file_id(self, file_id: str) -> str:
|
||||
return file_id.split("llm_output_file_model_id,")[1].split(";")[0]
|
||||
|
||||
def get_output_file_id_from_unified_file_id(self, file_id: str) -> str:
|
||||
return file_id.split("llm_output_file_id,")[1].split(";")[0]
|
||||
|
||||
async def async_post_call_success_hook(
|
||||
self, data: Dict, user_api_key_dict: UserAPIKeyAuth, response: LLMResponseTypes
|
||||
) -> Any:
|
||||
if isinstance(response, LiteLLMBatch):
|
||||
## Check if unified_file_id is in the response
|
||||
unified_file_id = response._hidden_params.get(
|
||||
"unified_file_id"
|
||||
) # managed file id
|
||||
unified_batch_id = response._hidden_params.get(
|
||||
"unified_batch_id"
|
||||
) # managed batch id
|
||||
model_id = cast(Optional[str], response._hidden_params.get("model_id"))
|
||||
model_name = cast(Optional[str], response._hidden_params.get("model_name"))
|
||||
original_response_id = response.id
|
||||
|
||||
if (unified_batch_id or unified_file_id) and model_id:
|
||||
response.id = self.get_unified_batch_id(
|
||||
batch_id=response.id, model_id=model_id
|
||||
)
|
||||
|
||||
if (
|
||||
response.output_file_id and model_id
|
||||
): # return a file id with the model_id and output_file_id
|
||||
original_output_file_id = response.output_file_id
|
||||
response.output_file_id = self.get_unified_output_file_id(
|
||||
output_file_id=response.output_file_id,
|
||||
model_id=model_id,
|
||||
model_name=model_name,
|
||||
)
|
||||
await self.store_unified_file_id( # need to store otherwise any retrieve call will fail
|
||||
file_id=response.output_file_id,
|
||||
file_object=None,
|
||||
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
||||
model_mappings={model_id: original_output_file_id},
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
)
|
||||
asyncio.create_task(
|
||||
self.store_unified_object_id(
|
||||
unified_object_id=response.id,
|
||||
file_object=response,
|
||||
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
||||
model_object_id=original_response_id,
|
||||
file_purpose="batch",
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
)
|
||||
)
|
||||
elif isinstance(response, LiteLLMFineTuningJob):
|
||||
## Check if unified_file_id is in the response
|
||||
unified_file_id = response._hidden_params.get(
|
||||
"unified_file_id"
|
||||
) # managed file id
|
||||
unified_finetuning_job_id = response._hidden_params.get(
|
||||
"unified_finetuning_job_id"
|
||||
) # managed finetuning job id
|
||||
model_id = cast(Optional[str], response._hidden_params.get("model_id"))
|
||||
model_name = cast(Optional[str], response._hidden_params.get("model_name"))
|
||||
original_response_id = response.id
|
||||
if (unified_file_id or unified_finetuning_job_id) and model_id:
|
||||
response.id = self.get_unified_generic_response_id(
|
||||
model_id=model_id, generic_response_id=response.id
|
||||
)
|
||||
asyncio.create_task(
|
||||
self.store_unified_object_id(
|
||||
unified_object_id=response.id,
|
||||
file_object=response,
|
||||
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
||||
model_object_id=original_response_id,
|
||||
file_purpose="fine-tune",
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
)
|
||||
)
|
||||
elif isinstance(response, AsyncCursorPage):
|
||||
"""
|
||||
For listing files, filter for the ones created by the user
|
||||
"""
|
||||
## check if file object
|
||||
if hasattr(response, "data") and isinstance(response.data, list):
|
||||
if all(
|
||||
isinstance(file_object, FileObject) for file_object in response.data
|
||||
):
|
||||
## Get all file id's
|
||||
## Check which file id's were created by the user
|
||||
## Filter the response to only include the files created by the user
|
||||
## Return the filtered response
|
||||
file_ids = [
|
||||
file_object.id
|
||||
for file_object in cast(List[FileObject], response.data) # type: ignore
|
||||
]
|
||||
user_created_file_ids = await self.get_user_created_file_ids(
|
||||
user_api_key_dict, file_ids
|
||||
)
|
||||
## Filter the response to only include the files created by the user
|
||||
response.data = user_created_file_ids # type: ignore
|
||||
return response
|
||||
return response
|
||||
return response
|
||||
|
||||
async def afile_retrieve(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span]
|
||||
) -> OpenAIFileObject:
|
||||
stored_file_object = await self.get_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if stored_file_object:
|
||||
return stored_file_object.file_object
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
|
||||
async def afile_list(
|
||||
self,
|
||||
purpose: Optional[OpenAIFilesPurpose],
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
**data: Dict,
|
||||
) -> List[OpenAIFileObject]:
|
||||
"""Handled in files_endpoints.py"""
|
||||
return []
|
||||
|
||||
async def afile_delete(
|
||||
self,
|
||||
file_id: str,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
llm_router: Router,
|
||||
**data: Dict,
|
||||
) -> OpenAIFileObject:
|
||||
file_id = convert_b64_uid_to_unified_uid(file_id)
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
[file_id], litellm_parent_otel_span
|
||||
)
|
||||
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
|
||||
if specific_model_file_id_mapping:
|
||||
for model_id, file_id in specific_model_file_id_mapping.items():
|
||||
await llm_router.afile_delete(model=model_id, file_id=file_id, **data) # type: ignore
|
||||
|
||||
stored_file_object = await self.delete_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if stored_file_object:
|
||||
return stored_file_object
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
|
||||
async def afile_content(
|
||||
self,
|
||||
file_id: str,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
llm_router: Router,
|
||||
**data: Dict,
|
||||
) -> "HttpxBinaryResponseContent":
|
||||
"""
|
||||
Get the content of a file from first model that has it
|
||||
"""
|
||||
model_file_id_mapping = data.pop("model_file_id_mapping", None)
|
||||
model_file_id_mapping = (
|
||||
model_file_id_mapping
|
||||
or await self.get_model_file_id_mapping([file_id], litellm_parent_otel_span)
|
||||
)
|
||||
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
|
||||
|
||||
if specific_model_file_id_mapping:
|
||||
exception_dict = {}
|
||||
for model_id, file_id in specific_model_file_id_mapping.items():
|
||||
try:
|
||||
return await llm_router.afile_content(model=model_id, file_id=file_id, **data) # type: ignore
|
||||
except Exception as e:
|
||||
exception_dict[model_id] = str(e)
|
||||
raise Exception(
|
||||
f"LiteLLM Managed File object with id={file_id} not found. Checked model id's: {specific_model_file_id_mapping.keys()}. Errors: {exception_dict}"
|
||||
)
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
Reference in New Issue
Block a user